University of California, Berkeley Physics 110B, Spring 2004 (*Strovink*)

These exercises should help to reinforce your understanding of component notation, repeated indices, and the transformation properties of vectors and tensors in spacetime:

6.

Consider the Levi-Civita density $\epsilon_{ijk} \equiv 1$ (ijk = even permutation of 123); $\equiv -1$ (odd permutation of 123); $\equiv 0$ (otherwise). It is found, for example, in the cross product

$$(\vec{a} \times \vec{b})_i = \epsilon_{ijk} a_j b_k .$$

Note that summation over the repeated indices j and k is implied; their domain is $1 \le j, k \le 3$. (a.)

Show that

$$\epsilon_{ijk}\epsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl} ,$$

where δ is the Kronecker delta function (whose elements are those of the unit matrix). (b.)

The determinant of a 3×3 matrix is given by

$$\det A \propto \epsilon_{ijk} A_{il} A_{jm} A_{kn} \epsilon_{lmn} .$$

By considering the number of nonzero terms on the RHS, and comparing it to the number of terms you would have expected for a 3×3 determinant, deduce the constant of proportionality. Express it in terms of a factorial.

(c.)

Guessing the explicit constant of proportionality, write a similar equation for the determinant of a 4×4 matrix. How should ϵ_{ijkl} be defined?

7.

Griffiths Problem 12.55. Don't get fooled by the typo – he means " $\partial^{\mu} \equiv \partial/\partial x_{\mu}$ ".

8.

An object a^{μ} is a (contravariant) four-vector if it transforms (between frames as defined in Short Course in Special Relativity (SCSR) Fig. 2) according to

$$a^{\prime\mu} = \Lambda^{\mu}_{\ \nu} a^{\nu}$$
,

where Λ is the (symmetric) 4×4 Lorentz transformation matrix. (Conventionally, the first

(superscript) index labels the row and the second (subscript) index labels the column, but this makes no difference for a symmetric matrix.) Covariant four-vectors instead transform according to

$$a'_{\mu} = a_{\nu} (\Lambda^{-1})^{\nu}_{\mu}$$

(otherwise the scalar product $a_{\mu}a^{\mu} = a'_{\mu}a'^{\mu}$ would not remain invariant for different Lorentz frames). Consider now an (arbitrary) four-tensor $H^{\mu\nu}$. In frame \mathcal{S} , $H^{\mu\nu}$ contracts with covariant four-vector a_{ν} to yield contravariant four-vector b^{μ} , according to

$$b^{\mu} = H^{\mu\nu} a_{\nu}$$
.

In the frame S', requiring $H^{\mu\nu}$ to satisfy the transformation properties of a four-tensor, we define $H'^{\mu\nu}$ so that

$$b^{\prime\mu} = H^{\prime\mu\nu} a_{\prime\prime}' .$$

Prove that

$$H^{\prime\mu\nu} = \Lambda^{\mu}_{\rho} \Lambda^{\nu}_{\sigma} H^{\rho\sigma}$$
.

This defines the Lorentz transformation property of a four-tensor.

9. Consider the antisymmetric electromagnetic field strength tensor

$$F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} ,$$

where both ∂^{μ} and A^{μ} are (contravariant) four-vectors. Prove that $F^{\mu\nu}$ is a four-tensor, *i.e.* it transforms according to the result of Problem 8.